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Abstract. In order to provide more comprehensive medical services and
personalized health monitoring according to individual needs, Body Area
Networks (BANs) have been extensively studied by many researchers. As
BANs involve the transmission of personal private data, the security of
the communication is of utmost importance. Unfortunately, existing en-
cryption techniques cannot be directly applied with the limited power or
computation ability of the sensors in BANs. An alternative direction is
to use physiological signals for key agreement. However, many of the cur-
rent physiological signal-based key agreement schemes either have high
overheads or are vulnerable to certain security issues. In this paper, we
proposed a novel secret sharing and Bloom filter based key agreement
scheme that balances overhead and security for BANs. Also, we use an
approximate hash table to free ourselves from the problem of depen-
dence on the ordering of features, which has been neglected by previous
researchers. We validate the security of our scheme with based on real
datasets and compare overheads with other solutions.

Keywords: Body Area Networks · Key Agreement · Physiological Sig-
nals · Secret Sharing.

1 Introduction

E-health entails the comprehensive application of communication technology
in healthcare, spanning disease prevention, diagnosis, treatment, and recovery.
It addresses issues of non-openness and transparency in medical information,
while also to some extent integrating scattered medical resources. With the rapid
advancement of embedded technology, an increasing number of sensors are being
integrated into wearable devices, also known as smart sensors, enabling them to
offer personalized and customized healthcare services.

Various types of devices communicate within the human body domain via
wireless networks, forming Body Area Networks (BANs). BANs essentially rep-
resent a specialized form of the Internet of Things (IoT), differing in their use
of sensor nodes with lower performance and shorter battery life. In BANs, it is
essential to facilitate end-to-end transmission of collected data between sensors.
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This data may contain identifiable biological information about the user, which
is inherently private and highly sensitive. Therefore, ensuring a higher level of
security in the communication process is imperative compared to traditional IoT
systems [10,13,16,17].

To meet security and privacy requirements, data-encrypted transmission is
widely used for data security protection today [8, 9]. Encryption ensures the
confidentiality and integrity of the data. If data are transmitted in plain text,
users cannot avoid the risk of eavesdropping, replay attacks, or even tampering
by attackers [2, 12]. Because biological data concern the physiological health of
the user, tampering can lead to serious consequences such as misdiagnosis, posing
significant risks to the user’s life and property safety.

Modern encryption techniques encompass both symmetric and asymmetric
encryption. One notable drawback of asymmetric encryption systems is their
increased demand for system resources in computation or storage. Sensors within
BANs are constrained by various application scenarios, such as being implanted
in the human body or worn on the body. These limitations make it challenging
for them to accommodate significant overheads in computation, storage, and
battery usage. For instance, in the case of implanted sensors, also known as
Implantable Medical Devices (IMDs), surgical procedures are often necessary for
battery replacement once they are depleted. Consequently, the frequent adoption
of elliptic curve-based asymmetric encryption systems is restricted by the limited
resources available for such sensors.

Originally researchers used the form of pre-deployed secret messages to study
how to design key agreement protocols. This approach was abandoned due to
its lack of scalability and the potential security risks it posed. Sensors collect a
variety of physiological signals that are unique and distinguishable in the human
body, such as heartbeat and blood pressure. This data, which can be observed
in almost all areas of the human body, are valuable assets that can be utilized
for key agreement and have been extensively researched by scholars. Hence,
researchers prefer symmetric encryption systems that require less computation
overhead. Thus, the key to achieving security is to create a secure protocol for
the confidential exchange of keys.

Previous studies [6, 15] have assumed the feasibility of obtaining accurate
feature sequences from physiological signals that exhibit strong ordering. For
instance, let f1, f2, f3, f4, f5 and f ′

1, f
′
2, f

′
3, f

′
4, f

′
5 represent feature sequences gen-

erated by two sensors located at different parts of the same body. In an ideal
scenario, fi = f ′

i for i ∈ 1, 2, 3, 5, indicating that some features differ while
others remain the same. Consequently, the two sensors can share a common se-
cret, enabling the establishment of a secure communication channel based on
shared equal features. However, false positives during physiological signal detec-
tion can lead to the insertion of additional peaks into feature sequences, causing
misalignment between fi and f ′

i . For example, the actual situation may involve
f1 = f ′

1, f3 = f ′
2, f4 = f ′

3, f5 = f ′
4. However, from the sensors’ perspective, mis-

alignment results in f1 = f ′
1, f2 ̸= f ′

2, f3 ̸= f ′
3, f4 ̸= f ′

4, f5 ̸= f ′
5 if the misalign-

ment issue is disregarded. The problem of misalignment, which significantly
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affects the success rate of feature matching, has been overlooked by previous
researchers.

In this paper, we propose a Secret Sharing Based Key Agreement scheme
(SSKA). SSKA employs the Shamir secret sharing scheme to maintain the en-
cryption key as a confidential matter, enabling the parties to securely exchange
keys. The main contribution as follows:

– We present a new key agreement protocol that strikes a balance between
security and overhead by combining Shamir’s secret sharing and Bloom filter.

– We tackle the problem of misalignment by utilizing an approximate hash
table, which requires a bit more communication and computation.

– We conduct complete simulations utilizing genuine datasets.

2 Related Work

2.1 Quantification of Physiological Signals

Xu et al. [14] demonstrated that the last 4 bits under the binary representation of
Inter-Pluse-Interval (IPI) have almost complete randomness. Venkatasubrama-
nian et al. [11] proposed a method to quantify physiological signals by using an
augmented fast Fourier transform to generate features. Chizari et al. [4] analyzed
the physiological signals with respect to important features such as ubiquity, ac-
tivity, robustness, persistence, and uniqueness, and noted that the last 3 features
have not yet been systematically examined in the current methods for random-
ness extraction from IPI. The study proposed methods to measure the latter
3 features and concluded that extraction of strongly uniform random numbers
from IPI is not possible. The authors suggested using the trend of the IPI rather
than its specific values and proposed a new method for randomness extraction.

2.2 Key Agreement Methods

It has been suggested by some researchers that human physiological signals can
be used to create secure communication between each sensor device in BANs,
without taking into account the premise of secure communication between BANs
and remote third parties. Examples of such biometrically independent physiolog-
ical signals are Electrocardiography (ECG or EKG) and Photoplethysmogram
(PPG), which can be detected in different parts of the body with similar charac-
teristics. Cherukuri et al. [3] proposed that these signals can be used to generate
inter-sensor sharing session keys. Venkatasubramanian et al. [11] observed that
the Hamming distances of IPI obtained from the same human body and from
different human bodies are 60 and 65, respectively. This is due to the fact that
IPI is encoded as binary, and translational and rotational errors can lead to very
different values.

In order to take advantage of the fact that similar yet distinct physiological
signals can be obtained from different parts of the human body, many researchers
have proposed their own solutions based on fuzzy vaults. Hu et al. [6] proposed
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Ordered-Physiological-Feature-based Key Agreement (OPFKA) which has lower
computational consumption and higher security compared to PSKA. Zheng et
al. [18] analyzed fuzzy vault and fuzzy commitment in the context of ECG-based
key agreement, and concluded that fuzzy commitment-based schemes have better
false acceptance rates, while fuzzy vault-based schemes can achieve lower false
positives with lower overhead. Hodgkiss et al. [5] proposed a rotation-assisted
fuzzy vault scheme to enhance the security of using fuzzy vault construction.

3 Background

3.1 Physiological Signals

ECG is a signal that records the electrophysiologic activity of the heart in units
of time. The signal travels from the heart through various organs and tissues
of the body and can eventually be detected on the body surface. Although the
heartbeat activity of the human body is regular, the electrical currents generated
at the microscopic level do not exactly conform to this pattern. Because the
human heart rate is controlled by its parasympathetic nerves and can be affected
by factors brought about by biological rhythms, human activity, respiration, and
temperature, it has a certain degree of randomness and unpredictability and can
be used as a source of random number generation.

3.2 Shamir’s Secret Sharing

Shamir’s secret sharing scheme is based on polynomial interpolation over a finite
field. Suppose we have a secret S, which we share with n participants, each of
whom holds a piece of S, denoted as S1, S2, ..., Sn. We agree on a threshold value
t in advance before splitting the secret, and the secret can be recovered if and
only if the number of participants involved in the recovery of the secret is ≥ t.

The basic idea of the scheme is based on the Lagrange interpolation theo-
rem. Let us assume that the secret S comes from a finite field and we choose
t − 1 random numbers a1, a2, ..., at−1 from the same finite field. Construct the
polynomial:

f(x) = S + a1x+ a2x
2 + · · ·+ at−1x

t−1 (1)

Then, for positive integers i ≤ n, let us assume Si = (i, f(i)) and share Si

to participant i. To recover the secret, it is sufficient for any t participants to
cooperate and recover the secret by the following formula:

f(0) =

t−1∑
j=0

yj

t−1∏
m=0
m ̸=j

xm

xm − xj
(2)
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Fig. 1. The Process of SSKA

4 Our Scheme

In this section, we introduce our Secret Sharing based Key Agreement scheme.
Our scheme utilizes the fact that physiological signals from different parts of the
same human body are similar, but not identical. That is, the ideal IPI signals
captured in different parts of the same human body should be mostly the same
with small differences. We aim to maximize the use of this similarity to securely
implement key exchange. The whole scheme process is shown in Fig. 1, which
consists of three processes: feature generation, secret sharing, and secret recovery.
We assume that the key agreement occurs between two sensors s and r in different
parts of the human body. s and r are the sender and receiver of the key agreement
process, respectively.

4.1 Feature Generation

Alg. 1 describes the phrase of feature generation. In this phase, we use the XQRS
algorithm to obtain the QRS peak cluster locations, and then use the correc-
tion algorithm to correct whole QRS peak cluster indexes. The IPI sequence is
obtained by calculating the difference between the neighboring R-peak indices.

Since using IPI sequence directly may leak privacy, we need to extract fea-
tures with enough randomness. Xu et al. [14] showed that the last 4 bits of the
IPI have a high degree of randomization, and several studies also utilized this
property for key agreement. Thus, this technique is also adopted by SSKA. For
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simplicity, we reuse IPI to refer to the last 4 bits of IPI. To avoid false positives
during secret sharing and reduce overhead in feature generation, we design a
sliding window to extract features with length k/4 and step p where k is the
length of features. For example, f1

s is extracted from {IPI1, .., IPIk/4} and f2
s

is extracted from {IPI1+p, ..., IPIk/4+p}.

Algorithm 1 The Process of Feature Generation
Input: raw data, window length k/4, step size p, feature length k, feature number N
Output: Fs

1: xqrs ← XQRS(raw data). //obtaining QRS peak group indexes using the XQRS
algorithm

2: {Ri} ← search local maximum of xrqs. //Searching for local maxima in QRS to
obtain R-peak indexes

3: for Iterate over {Ri} do
4: IPIi ← Ri+1 −Ri

5: end for
6: for Iterate over IPI with l do
7: {c0, c1, c2, ..., ck/4} ← extract last 4 binary of IPIi, IPIi+1, IPIi+2, ..., IPIi+k/4

8: f j
s ← c0 ⊕ c1 ⊕ c2 ⊕ ...⊕ ck/4

9: if j ≤ N then
10: stop
11: end if
12: end for
13: Fs = {f1

s , f
2
s , ..., f

N
s }

14: return Fs

Similarly, the receiver r eventually produces Fr = {f1
r , f

2
r , ..., f

N
r }.

4.2 Secret Sharing

Alg. 2 is the secret sharing process. With features Fs, s can build the polynomial
by choosing the first t − 1 features as the constants of the polynomial and K,
which is a random key generated by s, as the secret S to be shared:

f(x) = K + f1
s x+ f2

s x
2 + · · ·+ f t−1

s xt−1 (3)

After completing the building of the polynomial, N secret pieces
(
f i
s, f

(
f i
s

))
are

generated by using all the feature values as inputs x.
We use a Bloom filter BF to hide the secret pieces to be shared. m is the

length of BF and q is the number of hash functions that affect the false positive
rate (FPR) and computational overhead. We will discuss the parameter setting
in experiments.

To handle the misalignment problem, we introduce an approximate hash
table HT . Each polynomial value f

(
f i
s

)
is placed in the corresponding position

addr ← SHA(f i
s)%α. If a collision occurs, the polynomial value is inserted at

the end of the chain table at the corresponding position.
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After the above processes, s sends a message HT |BF to r without encryption.

Algorithm 2 The Process of Secret Sharing
Input: secret K, HT size α, threshold t, feature sequence Fs, hash family H =
{h1, ..., hq}

Output: HT,BF ,
1: HT ← 2d linked list with length α
2: BF ← 1d array with length m
3: for iterate over Fs do
4: calculate f(f i

s)
5: addr ← SHA(f i

s)%α
6: add f(f i

s) to HT [addr]
7: for h ∈ H do
8: BF [h(f i

s)] = 1
9: end for

10: end for
11: return HT,BF

Algorithm 3 The Process of Secret Recovery
Input: hash table HT , Bloom filter BF , feature sequence Fr, threshold t
Output: K′

1: j = 0
2: for iterate over Fr do
3: if f i

r ∈ BF then
4: j ← j + 1
5: calculate f(f i

r)
6: addr ← SHA(f i

r)%α
7: remove f(f i

r) from HT [addr]
8: if j ≤ t then
9: stop

10: end if
11: end if
12: end for
13: K′ ← using Lagrange interpolation
14: return K′

4.3 Secret Recovery

After the sensor r receives the message, it needs to retrieve the matched features
mapped into BF . At this point, r has generated its own sequence of features Fr.
According to the predefined hash family H, r matches the features mapped to
BF one by one until it finds the set of features that satisfies the threshold value
t. Once the matched features are found, the corresponding polynomial values
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in HT are retrieved. Finally, the polynomial is reconstructed using Lagrange
interpolation to solve the hidden secret K ′.

The process of verifying that the encryption key has been successfully estab-
lished is relatively simple, the sensor r simply uses its own recovered key K ′, to
generate the HMAC HMAC(K ′, No|IDs|IDr) where No is a timestamp, IDs

and IDr are the ID of s and r, respectively. If s can decode the message using
its own key K, then the key agreement is successful.

5 Security Analysis

5.1 Experiment Setting

The dataset used in this paper is from physinoet.org, contributed by Vollmer et
al. [1]. The dataset consists of 13 participants, each wearing five types of sensors
at the same time to collect physiological signals in a synchronized manner.

We choose ECG data collected by the clinically certified SOMNOtouch NIBP
sensor as the experimental data. The sampling frequency of this data is 256Hz,
and 4 copies of synchronized physiological data from different locations (ECG0,
ECG1, ECG2, ECG3) will be collected for each participant. We divide them into
two groups, one for ECG0 and ECG1 which are closer to the heart, and one for
ECG2 and ECG3 which are slightly away from the heart.

We selected the first 40, 000 sample points of each participant’s ECG, and
then divided the 40, 000 sample points into 10 portions of the 4, 000 sample
points each in order to generate 30 features.

With the suggestion of [15] that makes FPR ≤ 1−1024, if we set N = 30, we
should take p = 4, q = 10,m = 433, k = 64.

5.2 Distinguishability

Distinguishability refers to the ability of key agreement protocols deployed in
BANs to recognize and distinguish physiological signals of the same human body
or different human bodies. In general, key agreement protocols make full use
of the distinguishability of human physiological signals to achieve their own
distinguishability. We use false reject rate (FRR) to evaluate the failure rate of
key agreement on the same human body.
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Fig. 2. Average False Reject Rate When α = 30 or α = 512

Fig. 2(a) shows the average false reject rate when the size of HT α = 30.
ECG0 and ECG1 have lower FRR than ECG2 and ECG3 because they are closer
to the heart than the latter. ECG2 and ECG3, on the other hand, because they
are far from the heart, have a very high FRR after threshold t ≤ 26. The overall
FRR in Fig. 2(a) is relatively high. The reason for this is that the size of the
HT is too small, constrained by α, resulting in a high number of collisions. In
order to reduce the collisions, it is worthwhile to make α = 512, and Fig. 2(b)
shows the average false reject rate after modifying the size of the HT . It can be
seen that in the range of t ≤ 26, the FRRs are less than 0.13, and the FRR of
ECG0 and ECG1 is even almost 0. Therefore, to keep the FRR low, the size of
the HT should be large enough. It should be noted that even with α = 512, the
actual space overhead of HT remains the same as when α = 30.

6 Performance Analysis

The overall overhead is shown in Table. 1 with some similar works. Due to vari-
ances in implementation methodologies among distinct schemes, we conduct a
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comparative analysis of overhead differences by scrutinizing the generic compu-
tational operations employed.

Table 1. Compare of Overhead [15]

Scheme Storage Communication Computation Security
BDK [19] 12500 5252 ∼ 25228 4970 128
PSKA [11] 22500 22612 4970 121
OPFKA [6] 1220 12632 ∼ 12656 4970 122
SGenP [7] 1220 1368 30 128
BFG [15] 72 172 ∼ 185 300 131
SSKA 534 566 330 128

6.1 Storage Overhead

Since the overheads of identifiers, physiological features, hash values, message
authentication codes, and key storage are similar in different schemes, we only
needs to consider the overhead of storing feature vectors or vaults for the con-
venience of comparison. Table. 1 lists the minimum storage overhead of some
schemes. In SSKA, the sensor mainly needs to store BF and HT , and the total
storage overhead is 433 + 128 × 30 = 4273 bits, about 534 bytes. It is not as
good as BFG but is better compared to the rest of the schemes. Here the reason
for the size of each element in HT to be 128 bits is that while computing the
polynomial we use the 12th Mersenne prime number 2127 − 1. So for the sake of
estimation, it is estimated here to be 128 bits.

6.2 Communication Overhead

In SSKA, there are only three communications. Since the first communication
only consists of a synchronization signal sent by the initiator of the communi-
cation, its overhead can be neglected and the main communication overhead is
generated by the last two communications. For the second communication, the
sender sends the BF and HT , and for the third communication the receiver
sends the hash message authentication code. The overhead of the BF and HT
is about 534 bytes, and the overhead of the hash message authentication code is
256 bits. The total communication overhead is 566 bytes.

6.3 Computation Overhead

Currently, almost all physiological signaling-based key agreement schemes are
based on hashing, message authentication codes, and arithmetic operations, and
their computation overheads do not differ much. For comparison, we use the
number of hashes to evaluate the computation overhead of SSKA. Similar to
BFG, SSKA also performs 300 hashes and an additional 30 hash operations are
used to hide polynomial values. Therefore, the hashing overhead of SSKA is 330.
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6.4 Security Strength

In the above analysis, SSKA is worse than BFG in terms of storage, commu-
nication and computation overheads. Even in measuring the security strength,
the security strength of BFG is higher than SSKA. However, the 131 bits secu-
rity strength of BFG refers to the security of the key agreement phase, whereas
the security strength of SSKA is the length of the generated key, which is 128
bits. This is because the key of BFG is simply generated from the same features
through a hash function, and its individual features have a value space of 12
bits. Although its key length depends on the hash function used, it is vulnerable
to attacks from historical physiological data leakage due to the direct use of fea-
tures. SSKA, on the other hand, has a security level of Ct

264 in the key agreement
phase, which is much more than 131 bits. Thus, although the overhead of SSKA
is larger than BFG, the security strength is much stronger than BFG.

7 Conclusion

In this paper, we propose a Secret Sharing based Key Agreement Protocol,
SSKA. This scheme satisfies the high security strength key Agreement process
within acceptable performance overhead. With the combination of secret sharing,
Bloom filter and approximate hash table, the protocol not only solves misalign-
ment problem, but also has the features of plug and play, key scalability, high
security strength and low overhead. The results of our simulation experiments
show that our scheme has high security in the secret sharing process. And the
lower FRR proves the practicality of our scheme.
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